顶点小说

手机浏览器扫描二维码访问

第二百零七章 泊松分布概率和统计(第1页)

由于泊松得知了火山运动前会有磁场的变化,而这个磁场的变化发生次数不多。

泊松认为:“这种不同于地球磁场的火山磁场变换,如果发生的足够的少,就不会有火山运动,如果超过了某个次数的话,那就很可能会有异常的火山运动了。”

狄利克雷说:“你说的这个足够少有多少,足够多有多多?”

泊松认为:“足够少的意思是不可能不发生,只是不要为这样的次数而大惊小怪。但是超过这样的次数了,那么火车就危险了。”

狄利克雷说:“你有办法能找到火山磁场异常数字吗?”

泊松在考虑一种数学分布,对狄利克雷说:“你见过一种方差和期望相同的分布吗?”

狄利克雷愣住了,想了很长时间。

泊松说:“我正在考虑一种特殊的分布,适合描述单位时间内随机事件发生的次数,这个随机时间发生的概率很低,但是存在。”

狄利克雷问道:“这是从哪里推出来的?”

泊松说:“我是从二项式分布得出的,其中重复n次的伯努利,把n看出无穷大。同时发生概率p非常小。然后看单位时间发生λ次的样子,其中的k是实际的数字。”

泊松写出了泊松公式P=(x=k)=λ^k*e^(-λ)k!。

狄利克雷才知道这是根据二项式对n做无穷推导出来的。

狄利克雷说:“其中的方差和期望都等于λ吗?”

泊松说:“是的。”

1837年,泊松出版了《关于判断的概率之研究》(Recherchessurlaprobabilitédesjugements)。在书中他确立了概率的法则,给出了“泊松大数定律”,并且对于二项分布一种限制情形的离散随机变量描述了“泊松分布”。

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性。

喜欢数学心请大家收藏:()数学心

死神不来了  攻略对象变成室友后,他不对劲  小仓鼠今天有猫了吗  迷津蝴蝶  怪物崽崽和他的怪物监护人  枭鸢  杀了那个妖鬼  末世后我成了疯批alpha们的安抚剂  撩惹疯批顶E,笨蛋少爷他逃了  我在死亡副本当管理员  上流假象  穿到虫族和军雌相亲  新搬来的邻居  神魔剑玄录  夸夸我的神探祖父穿越爹  兽世养山君[种田]  我真没想在过去的年代当学霸  第三十年明月夜  君为客  还是修仙吧  

热门小说推荐
卧底有毒:缉拿腹黑boss

卧底有毒:缉拿腹黑boss

关于卧底有毒缉拿腹黑boss追查了许久的谋杀案终于告破。凉婵得意洋洋的对着自己的属下说这世上没有破不了的案子,就像这世上没有追不到的男人。属下们立马露出了崇拜神情。被追到的男人静静的坐在一边...

文坛救世主

文坛救世主

新书咸鱼系文豪开始更新ing张楚的文娱人生,从高考满分作文开始。他是悬疑推理大师,都市言情教主,盗墓探险鼻祖,现代文学接班人。华语文坛迎来救世主!...

英雄无敌泰坦之神

英雄无敌泰坦之神

关于英雄无敌泰坦之神人品三七开的韩锋,意外穿越到英雄无敌的世界。九系魔法,灭世之战,等待他的还有那鲜为人知的远古文明!...

兽世强宠:种种田撩撩夫

兽世强宠:种种田撩撩夫

以一敌三不在话下的苏安安意外坠落兽人大陆,幸好她还有空间异能和智慧傍身。苏安安握拳,你可以养活自己的!然而,几番遭遇危险后,她发现她高估了自己的能耐,要不然寻个男兽作伴?只是,强取豪夺爱黑化...

重生空间之全能军嫂

重生空间之全能军嫂

重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢重生空间之全能军嫂,别忘记分享给朋友...

我是土豪我怕谁

我是土豪我怕谁

关于我是土豪我怕谁获得土豪国王系统,走上人生巅峰路。...

每日热搜小说推荐