手机浏览器扫描二维码访问
欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余0.”
卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:
1、A关于加法成为一个Abel群(其零元素记作0);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环A还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环A还满足以下两条件,就称为“整环”(integraldomain):
5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;
6、ab=0=>a=0或b=0。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。
喜欢数学心请大家收藏:()数学心
枭鸢 上流假象 怪物崽崽和他的怪物监护人 我真没想在过去的年代当学霸 末世后我成了疯批alpha们的安抚剂 第三十年明月夜 君为客 杀了那个妖鬼 新搬来的邻居 我在死亡副本当管理员 神魔剑玄录 还是修仙吧 攻略对象变成室友后,他不对劲 夸夸我的神探祖父穿越爹 穿到虫族和军雌相亲 迷津蝴蝶 撩惹疯批顶E,笨蛋少爷他逃了 兽世养山君[种田] 死神不来了 小仓鼠今天有猫了吗
关于卧底有毒缉拿腹黑boss追查了许久的谋杀案终于告破。凉婵得意洋洋的对着自己的属下说这世上没有破不了的案子,就像这世上没有追不到的男人。属下们立马露出了崇拜神情。被追到的男人静静的坐在一边...
新书咸鱼系文豪开始更新ing张楚的文娱人生,从高考满分作文开始。他是悬疑推理大师,都市言情教主,盗墓探险鼻祖,现代文学接班人。华语文坛迎来救世主!...
关于英雄无敌泰坦之神人品三七开的韩锋,意外穿越到英雄无敌的世界。九系魔法,灭世之战,等待他的还有那鲜为人知的远古文明!...
以一敌三不在话下的苏安安意外坠落兽人大陆,幸好她还有空间异能和智慧傍身。苏安安握拳,你可以养活自己的!然而,几番遭遇危险后,她发现她高估了自己的能耐,要不然寻个男兽作伴?只是,强取豪夺爱黑化...
重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢重生空间之全能军嫂,别忘记分享给朋友...
关于我是土豪我怕谁获得土豪国王系统,走上人生巅峰路。...