手机浏览器扫描二维码访问
施莱夫利是瑞士的几何学家,1814-1895年活了80多岁。
在1850年的时候,他开始深入思考一个很有意义的问题。
就是高维空间的问题。
他知道在亚里士多德时代,普遍人认为世界是有3维空间的。
即使是有4维空间,也不容易想象。
但是,也不是不可以研究的。
这其中,可以用很都角度去研究高维度空间的问题。
研究立体几何图像,可以投影在2维平面中。所以研究4维物体,可以投影在三维空间中来研究。
很多东西,即使没有办法想象到,但也可以想到很多基本的东西,比如勾股定理在高维空间的计算中也是实用的。
而今天,施莱夫利想从最简单的角度来想高维空间的问题,也是一种规律。
那就是单形,也就是几何中最基本的形状。0维单形是点,1维单形是线段,2维单形是三角形,3维单形是4面体等等。
按照以上来看,单形在0、1、2、3、4、5维空间中。
对应单形点的个数分别为1、2、3、4、5.
对应单形线的个数为1、3、6、10、15,这个可以数一数。
对于面、甚至体必然也是存在着同时也重要的,但是对此问题,很多数学家都犯了难,表示很难数。
而对施莱夫利,他找到一个奇妙的办法,就是他突然发现1、3、6、10、15这个数字与杨辉三角中第三排的数字对应。
不仅仅是这样的数字跟高维单形的线的个数之后是吻合的,而且更厉害的是,杨辉三角中第四排和第五排的数字包含了面个数和体个数的信息。
施莱夫利找到很好的办法,很简单的得出了,对应单形的面的个数0、1、4、10、20个。
对应体的个数为0、0、1、5、15个,这个光靠想象的去数,是很不容易的,但用杨辉三角特别容易得到。
甚至连4维体的个数为0、0、0、1、6等等。
施莱夫利知道研究高维度的很多问题可以用杨辉三角,只是杨辉三角本身他也需要思考一阵了。
如果杨辉三角有了这种能力,说明它有一种整合高维空间的能力。
所以他开始考虑高维杨辉三角,这成为他的习惯。但三维杨辉三角的绘制有困难。
他试图想看看是不是有更多的东西会符合杨辉三角,同时把高维杨辉三角转化成二维的杨辉三角问题。
喜欢数学心请大家收藏:()数学心
穿到虫族和军雌相亲 小仓鼠今天有猫了吗 杀了那个妖鬼 我真没想在过去的年代当学霸 迷津蝴蝶 第三十年明月夜 撩惹疯批顶E,笨蛋少爷他逃了 新搬来的邻居 夸夸我的神探祖父穿越爹 神魔剑玄录 怪物崽崽和他的怪物监护人 上流假象 攻略对象变成室友后,他不对劲 君为客 死神不来了 兽世养山君[种田] 我在死亡副本当管理员 还是修仙吧 末世后我成了疯批alpha们的安抚剂 枭鸢
关于卧底有毒缉拿腹黑boss追查了许久的谋杀案终于告破。凉婵得意洋洋的对着自己的属下说这世上没有破不了的案子,就像这世上没有追不到的男人。属下们立马露出了崇拜神情。被追到的男人静静的坐在一边...
新书咸鱼系文豪开始更新ing张楚的文娱人生,从高考满分作文开始。他是悬疑推理大师,都市言情教主,盗墓探险鼻祖,现代文学接班人。华语文坛迎来救世主!...
关于英雄无敌泰坦之神人品三七开的韩锋,意外穿越到英雄无敌的世界。九系魔法,灭世之战,等待他的还有那鲜为人知的远古文明!...
以一敌三不在话下的苏安安意外坠落兽人大陆,幸好她还有空间异能和智慧傍身。苏安安握拳,你可以养活自己的!然而,几番遭遇危险后,她发现她高估了自己的能耐,要不然寻个男兽作伴?只是,强取豪夺爱黑化...
重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢重生空间之全能军嫂,别忘记分享给朋友...
关于我是土豪我怕谁获得土豪国王系统,走上人生巅峰路。...