顶点小说

手机浏览器扫描二维码访问

第四百五十章 杜勃维茨基-米柳金切锥流形(第1页)

一种有关实线性空间中的集合的特殊的锥.它定义为实线性空间的集合中的一点上的切方向的全体.有限维空间中的光滑曲线、曲面以至更一般的光滑流形中的一点处的切方向的全体是可以通过微分法明确定义的.

杜勃维茨基说:“我们现在需要研究关于不同坐标之间的仿射变化,也就是坐标之间会乘以矩阵来互相变化。然后需要找到一种变化的方法,还有一种形状,让这个形状上的每个点上的向量都一一对应。”

米柳金说:“那只能是找凸集,一种没有凹面的形状。凸集合上每个点都有切线,这个切线就是向量形成的一个锥形。是一种切锥。”

杜波维茨基说:“有理,毕竟凸面物上的切线没办法好好研究。”

米柳金和杜波维茨基都开始各自研究各种情况的切锥。

再次之前有一种切锥,是相依锥.这种锥是布里冈(Bouligand,G.L.)在20世纪30年代为研究几何问题而提出的,后来在非线性规划研究中又被重新提出,目前在非线性规划的文献中所说的切锥通常就指这种锥。这是一个闭锥。

而米柳金和杜波维茨基提出的是邻接锥,亦称中间锥、可导锥、杜勃维茨基-米柳金锥、尤尔塞斯科锥。

后来一个叫克拉克的数学家提出了克拉克切锥。亦称围邻锥.它是克拉克(Clarke,F.H.)在研究局部李普希茨函数的广义梯度理论时提出的。

这几种锥依次一个比一个小.但当K是凸集时,它们都与原来定义的切锥重合.

这些切锥也可以用序列极限来

对Q,R,S取各种不同的值及不同的次序,由此可定义出几十种切锥.其中最大的是T???(K,x),它称为共依锥,也是布里冈在30年代引进的;最小的是T???(K,x),它称为超切锥,这是个开凸锥,当它非空时,恰好是CK(x)的内部;T·??(K,x)有时也有应用,它称为内部锥,也称杜勃维茨基-米柳金锥。

正如在经典分析中,导数概念和切方向的概念是紧密联系在一起的,在非光滑分析中,各种广义导数概念就可通过各种切锥来定义.此外,还有若干种切锥的概念不能包括在上述一般定义中.

喜欢数学心请大家收藏:()数学心

怪物崽崽和他的怪物监护人  兽世养山君[种田]  我真没想在过去的年代当学霸  杀了那个妖鬼  小仓鼠今天有猫了吗  死神不来了  君为客  枭鸢  迷津蝴蝶  上流假象  撩惹疯批顶E,笨蛋少爷他逃了  我在死亡副本当管理员  穿到虫族和军雌相亲  第三十年明月夜  夸夸我的神探祖父穿越爹  新搬来的邻居  末世后我成了疯批alpha们的安抚剂  还是修仙吧  攻略对象变成室友后,他不对劲  神魔剑玄录  

热门小说推荐
卧底有毒:缉拿腹黑boss

卧底有毒:缉拿腹黑boss

关于卧底有毒缉拿腹黑boss追查了许久的谋杀案终于告破。凉婵得意洋洋的对着自己的属下说这世上没有破不了的案子,就像这世上没有追不到的男人。属下们立马露出了崇拜神情。被追到的男人静静的坐在一边...

文坛救世主

文坛救世主

新书咸鱼系文豪开始更新ing张楚的文娱人生,从高考满分作文开始。他是悬疑推理大师,都市言情教主,盗墓探险鼻祖,现代文学接班人。华语文坛迎来救世主!...

英雄无敌泰坦之神

英雄无敌泰坦之神

关于英雄无敌泰坦之神人品三七开的韩锋,意外穿越到英雄无敌的世界。九系魔法,灭世之战,等待他的还有那鲜为人知的远古文明!...

兽世强宠:种种田撩撩夫

兽世强宠:种种田撩撩夫

以一敌三不在话下的苏安安意外坠落兽人大陆,幸好她还有空间异能和智慧傍身。苏安安握拳,你可以养活自己的!然而,几番遭遇危险后,她发现她高估了自己的能耐,要不然寻个男兽作伴?只是,强取豪夺爱黑化...

重生空间之全能军嫂

重生空间之全能军嫂

重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢重生空间之全能军嫂,别忘记分享给朋友...

我是土豪我怕谁

我是土豪我怕谁

关于我是土豪我怕谁获得土豪国王系统,走上人生巅峰路。...

每日热搜小说推荐