顶点小说

手机浏览器扫描二维码访问

第二百三十五章 柯西-黎曼方程复变函数(第1页)

柯西的办公室,也是他工作的地方。

满屋子堆满了信件和纸张。

有论文,草稿,还有外面的人给自己的信件。

论文有自己的,有学生的,还有收集的同行的。

草稿有计算的,设计的,画图的,已经用完的和用到半中间的。

信件有同行的,有有梦想的人的新想法,还有民科的垃圾文。

柯西一开始还可以应付这些东西,但随着量的增加,只能是有哪个看哪个的了。

他苦恼于自己敢接如此庞大的活。以为可以发现人才,交流思想,但是自己根本没有那么多精力。

柯西开始研究关于复数坐标系中的微积分。

如果在复数里,那种微积分就需要借鉴一种多元的方程的微积分的思想。

严格的柯西必须要弄清楚其中微积分的条件。

在二维直角坐标系的直线中需要连续可导,但在三维以上的坐标系中的可微,就麻烦了,它起码是两个以上的方向了。

柯西找到了f(z)=u(x,y)+iv(x,y)这种类型的复变函数,经过多次的验证,自己证明了对u这个方程求x次导数等于对v求y次导数,同时对u求y次导数等于负的对v求x次导数时,这个方程可以微分。

这也叫柯西条件。

这个方程组最初出现在达朗贝尔的着作中。

后来欧拉将此方程组和解析函数联系起来。

然后柯西采用这些方程来构建他的函数理论。

后来黎曼也证明的这个情况。

黎曼关于此函数理论的论文于1851年问世。

而脑洞大的黎曼在想,万一有f(z)=u(x,y)+iv(x,y)+jw(x,y)这样的怪东西,会有什么样的对称现象?

是对u求x次导数,等于v求y次导数,不对,不对称这个。

重来一遍。

是对u和v求x次导数等于,对w求y的导数;对v和w求x次导数等于对u求y次导数;对u和w求x次导数等于v求y次导数?和对u和v求y次导数等于,等于负的对w求x的导数;对v和w求y次导数等于负的对u求x次导数;对u和w求x次导数,等于负的v求x次导数?可以出现这样的轮换对称,那实数,i和j之间到底是什么?

这个j是后来的汉密尔顿发现的四元数这样的东西吗?

这样的对称性的这种公式可以存在并且对称吗?

那对于f(w)=u(x,y,z)+iv(x,y,z)这样个公式呢?这是个什么鬼?

黎曼一个走神,又想到了其他问题,把这个忘了。

柯西脑子里仅仅有一堆高维空间可微的样子,心里害怕,便不敢去触碰了。

喜欢数学心请大家收藏:()数学心

我在死亡副本当管理员  我真没想在过去的年代当学霸  枭鸢  迷津蝴蝶  杀了那个妖鬼  兽世养山君[种田]  君为客  撩惹疯批顶E,笨蛋少爷他逃了  穿到虫族和军雌相亲  神魔剑玄录  攻略对象变成室友后,他不对劲  末世后我成了疯批alpha们的安抚剂  死神不来了  还是修仙吧  新搬来的邻居  怪物崽崽和他的怪物监护人  第三十年明月夜  上流假象  小仓鼠今天有猫了吗  夸夸我的神探祖父穿越爹  

热门小说推荐
都市弃少

都市弃少

我秦凡就算是累死,饿死,去马路上要饭,也绝对不会认你们的!叮helliphellip银行卡账户到账一亿元。钞票的味道helliphellip真香。...

机长的全能宅妻

机长的全能宅妻

简单,就像她的名字一样,很简单,生活简单,人际关系也简单,疫情之前她是一个整日都在她那80平米的按揭房里打转的网络小宅女,奔三的年纪,闺蜜远离了,男人还没有,电话簿里的联系人始终就那么几个,除了父母亲人还真没有几个关系比较亲近的。胡硕,简单同小区的邻居,准确说是她隔壁的邻居,据说是一个飞行员,平常,两个人是八竿子都打不着的,可因为一场疫情,两人却结识了。情景一凌晨两点小区业主群正品N95口罩,刚到货20个,谁要?有两人秒回我要!多少钱?某业主贱笑50元一个!简单那么贵?老板,你抢劫吧?不到一分钟,某业主捂嘴贼笑不好意思啊美女,口罩卖完了!跟着一条信息发出大姐,都啥时候了,还讲价呢?随即,后面还附赠了一个鄙视的笑容。大,大姐?我有这么老么?简单强压下心中的怒火,直接丢匕首丢炸弹!情景二叮咚,叮咚胡硕拉开门你找谁?门口人哟,不好意思,按错门了!与此同时,隔壁房门打开,一个女人,三人愕然!随即,嘭的一声,胡硕丢给简单一个玩味贰复杂的眼神。如果您喜欢机长的全能宅妻,别忘记分享给朋友...

八零之悍媳当家

八零之悍媳当家

关于八零之悍媳当家意外穿书,冷艳毒舌的米其林大厨,竟然穿进一本年代文里成了首富男主的胖妻恶媳,妥妥的炮灰,不但在婆家毫无立足之地,还把娘家的亲人全作死了!啥?谭薇薇不屑的一哼姐贱的?男人不待见,我还赖着他?姐自己能成首富,凭啥去抱男人的金大腿?嫌我土胖?减肥式美容走起来!嫌我馋懒?那是你没见过躺赢的人生!嫌我能作?姐就是极品中的极品!怎么滴?就送男主一句话日落西山你不陪,东山再起你是谁?滚蛋!嗯?说!怎么...

抗战之英雄血

抗战之英雄血

热血战斗,保家卫国,誓死守护,傲骨无双铸军魂!如果您喜欢抗战之英雄血,别忘记分享给朋友...

爱卿你是否靠得太近了

爱卿你是否靠得太近了

关于爱卿你是否靠得太近了安歆溶,人生信条是不要太出众,枪打出头鸟。应悠之,装死第一高手。一场意外,让两个本不在一个时空的人相遇了。安歆溶一觉起来,竟然穿成皇帝,这个世界上还有比自己更苦逼的存在吗?应悠之本来想着装瞎打诨,没想到自己离这条路渐行渐远了。各种意料不及,各种事件将两个人的命运彻底交织在了一起。小说偏向于轻小说向,轻搞笑轻推理和穿越元素。...

傲世剑神

傲世剑神

剑者,自当杀伐果断,敢于天独斗!华夏第一剑修秦尘,在修炼之时,莫名其妙的来到了玄幻大世界,并附身于同名同姓的废物弟子体内。前世为第一剑修的他,天赋奇高无比,堪称妖孽,悟性更是骇人,任何剑法,看一遍就能习会,然后功法,扫一眼就能记在脑中,如今,他落入玄黄大世界,居然被人耻笑为无用废物,心性高傲的他,岂能忍受如此奇耻大辱!上一世,我为天下第一,这一世,我亦要如此!谁若拦我,我便杀谁,无论神佛,无论妖魔!PO18脸红心跳(18wenhvip)提供傲世剑神最新章节全文免费阅读!。...

每日热搜小说推荐